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ABSTRACT: The key characteristic of single-molecule magnets (SMMs) is the anisotropy-induced blocking barrier, which
should be as efficient as possible, i.e., to be able to provide long magnetic relaxation times at elevated temperatures. The strategy
for the design of efficient SMMs on the basis of transition-metal complexes such as Mn12Ac is well established, which is not the
case of complexes involving strongly anisotropic metal ions such as cobalt(II) and lanthanides (Ln). While strong intraionic
anisotropy in the latter allows them to block the magnetization already in mononuclear complexes, the presence of several such
ions in a complex does not result automatically in more efficient SMMs. Here, the magnetic blocking in the series of isostructural
3d−4f complexes CoII−LnIII−CoII, Ln = Gd, Tb, and Dy, is analyzed using an originally developed ab initio based approach for
the investigation of blocking barriers. The theoretical analysis allows one to explain the counterintuitive result that the Co−Gd−
Co complex is a better SMM than terbium and dysprosium analogues. It turns out that the highly efficient magnetic blockage in
the Co−Gd−Co complex results from a concomitant effect of unexpectedly large unquenched orbital momentum on CoII ions
(ca. 1.7 μB) and the large spin on the gadolinium (S = 7/2), which provides a multilevel blocking barrier, similar to the one of the
classical Mn12Ac. We conclude that efficient SMMs could be obtained in complexes combining strongly anisotropic and isotropic
metal ions with large angular momentum rather than in polynuclear compounds involving strongly anisotropic ions only.

■ INTRODUCTION

Single-molecule magnets (SMMs) are metal complexes
showing blockage of magnetization at low temperatures,
much as ordinary ferro- and ferrimagnets and regarded for
that as potential memory elements in future information
storage devices and quantum information processing.1−6 The
first investigated SMMs, Mn12ac

1 and Fe8
2, were complexes

corresponding to the so-called strong exchange limit,7 in which
the spread of the exchange levels arising from magnetic
interaction between metal ions much exceeds the zero-field
splitting on each of them (intraionic anisotropy). In such
systems, the exchange multiplets are characterized by the total
spin S of the complex, split by anisotropic interactions into 2S +
1 components. The latter group is split into Kramers doublets
for half-integer S and degenerate Ising doublets for integer S in

complexes with axial symmetry, with the components |S,M⟩ and
|S,−M⟩, where M is the spin projection on the anisotropy axis.2

The total splitting of the exchange multiplet S due to axial
anisotropy only is given by the formula Ueff = DS2. In the case
of a negative anisotropy constant, D < 0, the ground-state
doublet corresponds to M = ±S, i.e., to a maximally magnetized
state, while the reorientation of magnetization from S to −S
occurs via consecutive transitions between |S,M⟩ states for
neighboring M values, which correspond to climbing over the
barrier Ueff.

2 The height of the latter scales with the strength of
intraionic anisotropy on the metal ions2,7 (it usually provides
the dominant contribution8), while its dependence on the total

Received: November 23, 2012
Published: May 21, 2013

Article

pubs.acs.org/IC

© 2013 American Chemical Society 6328 dx.doi.org/10.1021/ic302568x | Inorg. Chem. 2013, 52, 6328−6337

pubs.acs.org/IC


spin is implicitly rather complex because of the spin
dependence of the anisotropy constant D.9−11 However, the
larger the ground-state spin, the more steps (i.e., higher orders
of the perturbation theory) that are needed to couple states
with opposite magnetization (e.g. |S,+S⟩ and |S,−S⟩), leading to
a slower relaxation mechanism.2−12

The quest for higher magnetization barriers turned the
attention of researchers toward strongly anisotropic metal ions,
with typical examples being lanthanides.13−16 The first
synthesized pure Ln SMMs were mononuclear double-decker
complex [Ln(Pc)2]

− (Pc = dianion of phthalocyanine),14

among which the Ln = Tb compound has shown a very high
blocking barrier, U = 260 cm−1, and a relaxation time on the
order of seconds for temperatures of around 1 K. Such a
remarkable SMM behavior is entirely due to the high symmetry
of the complex, close to D4d, which is the reason for the strong
suppression of quantum tunneling of magnetization (QTM).
Note that for an ideal D4d symmetry QTM in [Tb(Pc)2]

−

would be completely suppressed.17 Accordingly, in mono-
nuclear lanthanide complexes based on polyoxometalates,15

[Ln(W5O18)2]
9− and [Ln(β2-SiW11O39)2]

13−, showing a stron-
ger departure from an ideal D4d symmetry, the SMM behavior
is less pronounced. A more robust SMM behavior, not sensitive
to the site symmetry, is generally expected in polynuclear
complexes. However, the magnetic blocking in exchange-
coupled compounds with strongly anisotropic metal ions is
more involved because it represents a superposition of
exchange and intraionic mechanisms.18 The investigations
have shown18−21 that despite the high activation barriers of
individual metal ions the magnetic blocking is generally not
more efficient than that in mononuclear lanthanide complexes
for temperatures on the order of exchange splitting, which is
not very large in pure lanthanide complexes. Exceptions are the
N2

3− radical-bridged lanthanide complexes, where the exchange
interaction is larger than in pure lanthanide complexes by 2
orders of magnitude.22,23

The direct way to enhance the exchange interaction is by
designing mixed lanthanide−transition metal complexes.24−26

Intuitively, one may think that all metal ions in such mixed
complexes should be strongly anisotropic in order to achieve
the highest SMM efficiency. This, however, turned out not to
be the case, as was found for recently investigated complexes
CoII−LnIII−CoII, where Ln = lanthanide.27 This isostructural
series is best suited for investigation of the interplay of strongly
anisotropic metal ions in the mixed SMMs and will be
considered further in this article. Note that other series of linear
trimetallic compounds with the CoII−LnIII−CoII core have
exhibited similar SMM behavior,28,29 so that the results of the
present analysis are expected to apply for these compounds
also.

■ A CHALLENGING PROBLEM: WHY IS
COII−GDIII−COII A BETTER SMM THAN
COII−TBIII−COII AND COII−DYIII−COII?

For the present theoretical analysis, we have chosen three
complexes, CoII−LnIII−CoII with Ln = Gd (1), Tb (2), and Dy
(3).27 They were prepared by using a tripodal nonadentate
Schiff base ligand, N,N′,N″-tris(2-hydroxy-3-methoxybenzili-
dene)-2-(aminomethyl)-2-methyl-1,3-propanediamine. The
synthesis, characterization, and magnetic properties of these
compounds have been previously described.27 The structure of
1 is shown in Figure 1 (see Figures S1 and S2 in the Supporting
Information for the structures of 2 and 3, respectively). Despite

the lack of strict symmetry in these complexes, their structures
can be approximately described as trigonal, with the three metal
ions lying on a common axis (Figure 1b) and having roughly
equivalent Co sites. The compounds 1 and 2 crystallize in the
centrosymmetric C2/c space group with Z = 12, while 3
crystallizes in the chiral P212121 space group with Z = 4.27

All complexes exhibit similar static magnetic properties, as
shown in Figure 3 for 1, Figure S3 in the Supporting
Information for 2, and Figure S4 in the Supporting Information
for 3, respectively. The χ(T)−T plots show a sharp maximum,
approximately at the same position, testifying about ferromag-
netic interaction between metal ions of similar strength for all
three compounds. By contrast, the dynamical magnetic
properties differ drastically among the complexes. At zero
direct-current (dc) field, frequency-dependent out-of-phase
alternating-current (ac) susceptibility χ″(ω) was detected for
1−3 in the frequency range from 1 to 1500 Hz, pointing to a
slow relaxation of magnetization.27 The SMM behavior in these
complexes was further confirmed by measurements of magnet-
ization hysteresis loops performed on single microcrystals
(Figures S5 and S6 in the Supporting Information). These
measurements have shown a more pronounced SMM behavior
in 1, which shows a coercive field of 8860 Oe at T = 0.3 K and a
field-sweep rate as low as 0.002 T/s. Complex 2 shows a
comparable coercive field, 7330 Oe, for a significantly higher

Figure 1. Molecular structures of the trinuclear [LCoGdCoL]+ entity
1: (a) side view; (b) axial view. Color code: orange, Gd; green, Co;
gray, C; blue, N; red, O. H ions are omitted for clarity. Red dashed
lines denote the local anisotropy axes on Co ions, and green and red
arrows are local magnetic moments on the Co and Gd ions in one of
the components of the ground-state Kramers doublet of the complex.
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field-sweep rate of 0.14 T/s, while complex 3 shows an even
smaller coercive field. The relaxation times extracted from
χ″(ω) have shown an activated temperature behavior with a
larger activation barrier for 1, Ueff = 21.3 K, than for 2, Ueff =
14.5 K, at zero dc field. Compared at equal temperatures, the
relaxation times are longer in 1 (Figures S5 and S6 in the
Supporting Information). A higher SMM performance of 1
compared to 2 and 3 seems surprising because the anisotropy
comes only from CoII ions in the former complex, while it is
contributed also by the Ln ions in 2 and 3. In order to gain
further insight into this problem, we have performed ab initio
calculations on complexes 1−3.

■ EXPERIMENTAL AND COMPUTATIONAL DETAILS
The magnetic hysteresis loops have been measured on single crystals
of 1−3 using a micro-SQUID technique.30 The field was aligned with
the easy axis of magnetization using a transverse field method.31

Ab initio calculations of mononuclear fragments have been done
with the MOLCAS 7.6 package.32 All magnetic centers in 1−3 have
been computed, using the crystallographic structure of the molecule.
The neighboring magnetic centers were computationally described by
the closest diamagnetic analogue: cobalt was substituted by zinc, while
gadolinium, terbium, and dysprosium were substituted by La. For
example, the fragment Co1 in 1 was actually a Co−La−Zn complex
with the crystallographic position of all atoms. Basis sets describing all
atoms were taken from the ANO-RCC33 basis set library, available in
the MOLCAS package.32 Contractions of the employed basis sets are
shown in the Supporting Information. The active space of the
Complete Active Space Self-Consistent-Field (CASSCF) method34 for
cobalt fragments included seven electrons spanning the five 3d
orbitals. Another set of five 3d orbitals was added to account for the
double-shell effect.35 For lanthanide fragments, the active space
included the electrons from the last shell spanning seven 4f orbitals.
For lanthanide fragments, we computed in a state-average calculation
all roots arising from the considered active space. The dynamical
correlation was added only to the two Co sites of 1 (Table 1) by

means of the CASPT2 approach.36,37 It was performed on the state-
average CASSCF wave function on all states arising from the ligand
field (10 quartet and 40 doublet spin states). The following shifts were
employed to ensure feasibility and lack of intruder state problems:
IMAG 0.1, IPEA- standard (0.25), and AFRE 0.1. Because of the fact
that the dynamical correlation did not significantly change the results,
CASPT2 was not further performed for the Co2+ sites of 2 and 3. For
lanthanide fragments, the dynamical correlation was not considered.
The obtained spin terms in the CASSCF calculations were further
mixed by the spin−orbit coupling within the Restricted Active Space
State Interaction (RASSI) approach.38 For lanthanide fragments, only
a limited number of CASSCF states could possibly be mixed by spin−

orbit coupling because of the hardware limitations. The obtained
spin−orbit multiplets and ab initio computed matrix elements of the
angular momentum were further used by the SINGLE_ANISO
module32 to compute the g tensors and local magnetic properties.39

Thus, the magnetic properties of the individual metal ions have been
treated by a parameter-free ab initio approach, in which the spin−orbit
interaction is taken into account in a nonperturbative way.

The magnetic coupling between Co−Ln and Co−Co metal pairs in
1−3 was further treated within the Lines model,40 using the ab initio
obtained energies and wave functions of the corresponding metal
fragments. In this model, the isotropic exchange interaction between
different spin terms of a given pair of metal fragments, which would
arise in the absence of spin−orbit coupling on metal sites, is modeled
by a single-parameter Heisenberg exchange Hamiltonian. Diagonaliz-
ing the matrix of this Hamiltonian written on the basis of spin−orbit
multiplets of mononuclear metal fragments gives solutions corre-
sponding to anisotropic exchange interactions between Kramers
doublets of a given metal pair. This means that the obtained solutions
are equivalent with the solutions of an anisotropic exchange
Hamiltonian written in terms of pseudospins S̃ = 1/2 of Kramers
doublets of two metal sites, generally described by nine exchange
parameters. The main advantage of the employed Lines model is the
use of only one single parameter (J) to simulate the anisotropic
exchange coupling for each pair of metal fragments. The essential
feature of this model is that it becomes exact in the limit of two fully
isotropic metal ions and of two Ising metal ions (when both ions are
strongly axial, e.g., characterized by one single direction of magnet-
ization in the case of Kramers ions) or in the case of one isotropic and
one Ising metal ion. In the present case, given the strong axiality of Co,
Dy, and Tb ions in the investigated Co−Ln−Co complexes (vide
infra), the Lines model is fully adequate. The simulations of the
exchange spectrum have been done with a specially designed routine
POLY_ANISO, which was interfaced with the SINGLE_ANISO
program treating individual metal fragments. The obtained exchange
spectrum and the corresponding wave functions of the polynuclear
complex have been used for calculation of the temperature- and field-
dependent magnetic properties of the polynuclear complex with the
same routine POLY_ANISO. The exchange coupling constants JLn−Co
and JCo−Co are the only fitting parameters of the employed
computational approach. The intermolecular interaction was consid-
ered in the mean field and described by one parameter (zJ). These
parameters were extracted by a comparison of the experimental and
calculated magnetisms. This computational methodology has been
successfully applied for investigation of the magnetic properties of
other mixed complexes containing transition-metal and Ln ions.41,42

■ RESULTS AND DISCUSSION

The fragment ab initio calculations for gadolinium, terbium,
dysprosium, and all Co sites in 1−3 have been performed as
described above (Tables 1−3 and S1 and S2 for 1, S3 and S4
for 2, and S5 and S6 for 3 in the Supporting Information). The

Table 1. Energies (cm−1) of Low-Lying Quartet Statesa on
Co1 and Co2 Fragments in 1; Notice the Large Separation
of the Ground-State Term 4E from the Excited-State
Term4A1

Co1 Co2

CASSCF CASPT2 CASSCF CASPT2

0.0 0.0 0.0 0.0
49.6 57.3 120.0 120.6

3410.2 3395.9 3551.7 3535.0
7868.4 7772.2 8384.1 8311.9
8168.0 7999.3 8417.1 8330.4
8959.2 8807.5 9364.9 9264.4

aOnly the lowest six spin quartet terms are shown here. All quartet
(10) and all doublet (40) spin states were further mixed by the spin−
orbit coupling in RASSI.

Table 2. Energies (cm−1) of the Low-Lying Kramers
Doublets Arising from the Spin−Orbit Coupling on the
Lowest 4E and 4A1 Spin Statesa

Co1 Co2

CASSCF/RASSI CASPT2/RASSI CASSCF/RASSI CASPT2/RASSI

0.0 0.0 0.0 0.0
248.7 245.8 242.2 239.9
536.5 533.4 549.1 545.3
852.0 846.4 856.1 850.2
3771.6 3748.2 3880.8 3859.2
3847.4 3825.0 3954.8 3933.8

aThe weight of the 4E term in the four low-lying Kramers doublets is
more than 99%, which confirms the first-order spin−orbit coupling.
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directions of the main anisotropy axes on metal ions (except for
Gd, which is isotropic) are shown in Figures 1 and S1 and S2 in
the Supporting Information by dashed lines. As expected from
the structures of the compounds, they are almost perfectly
aligned along the Co−Ln−Co axis. An exception is the local
anisotropy axis on the dysprosium in 3, which makes an angle
of 14.2° with the direction Dy−Co1 and an angle of 15.1° with
the direction Dy−Co2 (Figure S2 in the Supporting
Information).
Unquenched Orbital Moments on Cobalt(II): beyond

the Textbook Paradigm. The pseudotrigonal symmetry of
the cobalt(II) environment makes the lowest two-spin quartets
almost degenerate (Table 1), i.e., corresponding to the 4E term
of the C3 group. The latter, being magnetic, will involve spin−
orbit coupling already in the first order of the perturbation
theory,43 resulting, in particular, in large separations between
low-lying Kramers doublets, which thus do not resemble the
conventional zero-field splitting in cobalt(II) complexes.44

Another consequence of the first-order spin−orbit coupling
in these fragments is the large values of the g factors along the
main anisotropy axis (gz in Table 3), which are due to large
unquenched orbital moments in this direction, ⟨Lz⟩. The latter
have values larger than 1.5 μB (Table 3) that cannot be
explained as originating solely from (split) octahedral ground-
state term T1g,

59 a model used in almost all ligand-field
treatments of cobalt(II) complexes.43−50 Below we analyze in
detail the reasons for the failure of this model in the present
case.
In the case of an octahedral environment, the orbital

momentum operator corresponding to the ground-state orbital
triplet (T1g) is proportional to the orbital momentum operator
of a conventional atomic triplet term (P),43,45 L̂(T1g) =
−AL̂(P), with the proportionality coefficient A = korb (3/2 −
cP

2)/(1 + cP
2). Here korb is the orbital reduction factor, and cP is

the coefficient of an admixture of the 4T1g(P) to 4T1g(F) [4F
and 4P are ground- and excited-state atomic terms of
cobalt(II)] in the wave function of the ground-state triplet
4T1g of the octahedral cobalt(II) complex. In the case of a weak
crystal field (compared to separation between 4F and 4P), cP =
0, and L(T1g) = 3/2korb (≈3/2 in the case of a weak metal−
ligand covalency). In the opposite case, of strong ligand field, cP
= 1/2 and L(T1g) = korb (≈1 in the case of a weak covalency).
The last is easily understood because the octahedral term in the
strong ligand-field limit is given by a single electronic
configuration (Scheme 1a) in which the orbital momentum
comes from its noncompensation in the t2g shell (middle t2g
orbital in Scheme 1a) ⟨Lz⟩ = korb[(2/3)

1/2⟨−2| − 1/√3⟨+1|]
lẑ[(2/3)

1/2| − 2⟩ − 1/√3|+1⟩] = −korb. Thus, in the case of
octahedral geometry, the orbital momentum in the ground-
state term 4T1g is found in the interval korb ≤ L(4T1g) ≤ 3/2korb,
i.e., does not exceed 3/2 even in the case of a weak covalency.

This situation does not change in the presence of weak low-
symmetry components of the ligand field (e.g., due to small
distortion of an octahedral geometry), so it is believed that the
magnetism of the low-symmetry cobalt(II) complexes can be
simulated by simply taking into account the splitting of the
ground-state term 4T1g.

43,45−47

Table 3. Main Values of the g Tensor in the Ground-State
Kramers Doublets and Their Unquenched Orbital Moments
(μB)

Co1 Co2

CASSCF/RASSI CASPT2/RASSI CASSCF/RASSI CASPT2/RASSI

gx = 0.4197 gx = 0.4085 gx = 0.4066 gx= 0.3974
gy = 0.4233 gy = 0.4120 gy = 0.4155 gy = 0.4059
gz = 9.2928 gz = 9.2817 gz = 9.2570 gz = 9.2464
unquenched orbital moment ⟨Lz⟩ in the ground-state doublet (μB)
1.668 1.662 1.649 1.643

Scheme 1. Ground-State Strong-Field Electronic
Configuration of Co2+ in Oh [Octahedral Environment (a)]
and a C3 Environment [Idealized Fragment of 1, Figure 1
(b)]a

aIn the latter case, c < 1/√3. Functions |±m⟩ are complex 3d orbitals
of Co2+, with |2,±m⟩ defined with respect to the trigonal quantization
axis z (upper plots in parts a and b).
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In the case of cobalt(II) fragments of 1−3, the deviations of
their geometry from an ideal octahedron cannot be considered
small. Figure 1b shows (see also Scheme 1b) that the oxygen
and nitrogen triangles (viewed from the trigonal axis) almost
superimpose on each other, thus approaching trigonal-prismatic
coordination geometry. In this case, the ground-state strong-
field electronic configuration, corresponding to the molecular
term 4E (if we keep the trigonal symmetry), is characterized by
a relatively large separation of the ground-state orbital a and
first excited-state orbital doublet e (Scheme 1b). This large
separation can be inferred from the excitation energy of the
third spin quartet in Table 1, which corresponds to the electron
transfer from the a orbital to the lowest e orbital in Scheme 1b.
The ligand-field orbitals look similar to the corresponding
orbitals for the octahedral coordination environment (Scheme
1a) but involve coefficients C and c (C2 + c2 = 1), which depend
on the details of the geometry. In the case of an almost
prismatic coordination, we have c < 1/√3 and the orbital
momentum of the 4E configuration in Scheme 1b, which comes
entirely from one single orbital of the lowest e shell (the one
that is doubly occupied), is ⟨Lz⟩ = korb(C⟨−2| + c⟨+1|)lẑ(C|−2⟩
+ c|+1⟩) = −korb(2 − 3c2). This expression shows that the
projection of the orbital momentum on the trigonal axis can
exceed 3/2 if the coefficient c is small enough and korb is close to
unity. We note that c vanishes in the case of prismatic-like
coordination with higher order of the main symmetry axis, in
which case we can achieve the maximal value ⟨Lz⟩ = 2 if korb is
close to unity. Compared to this limiting value, the orbital
momentum corresponding to Scheme 1b can be viewed as
reduced by the factor k = korb(1 − 3c2/2). Because the strong-
field configuration in Scheme 1b can already provide ⟨Lz⟩ >

3/2,
we may think that it should be preponderant in the wave
function of the ground-state term 4E. Indeed, the ab initio
calculations show that the configuration in Scheme 1b enters
the wave function of the ground-state spin quartet in Table 1
with a coefficient 0.96 for Co1 and 0.92 for Co2, which means
that it is already a good approximation for the latter.
The obtained results allow for a straightforward derivation of

the spin−orbit coupling operator for the 4E term. The latter is
characterized by two orbital configurations, the one shown in
Scheme 1b and the other corresponding to repopulated orbital
components of the lowest doublet e. At the same time, the a
and the higher e orbital shells remain always populated like in
Scheme 1b, i.e., correspond to zero total orbital moment of
involved electrons in each of them. This means that these two
shells will not contribute to the spin−orbit coupling, which thus
can be written as

ζ= Σ ̂ ̂ + ̂ ̂ + ̂ ̂
=H k s l s l s l( E) ( )i ix ix iy iy iz izSO

4
orb 1

3

where the summation goes over the electrons of the lowest
shell e. The nonzero contributions of the first two terms in the
brackets involve matrix elements of lîx and lîy between the two
orbitals of the lowest orbital doublet e, which are zero (this can
be checked directly by using the corresponding orbital wave
functions in Scheme 1b). Furthermore, in the remaining last
term, only the electron from the unpaired orbital of the lowest
shell e (i = 1) will contribute, whose orbital momentum is
obviously korb⟨l1̂z⟩ = −⟨Lz⟩ = k × 2, the last equality
corresponding to the configuration in Scheme 1b. Finally,
taking into account that the matrix elements of HSO(

4E) will be
calculated on wave functions of S = 3/2, corresponding to three
ferromagnetically coupled electrons, we can replace S ̂1z by the z

projection of the total spin,49 S ̂1z = Ŝz/2S. Thus, the expression
for the spin−orbit coupling for the 4E terms has the following
Ising form: HSO(

4E) = −kλSẑL̂z, where Lz = ±2, as discussed
above, and λ = ζ/2S = ζ/3 with ζ = 533 cm−1 the spin−orbit
coupling constant for cobalt(II).
The first-order spin−orbit coupling leads to the splitting of

the 4E term into four equidistant Kramers doublets. Choosing
the orbital reduction constant k = 0.801, we obtain an almost
perfect matching with the energies of the four Kramers
doublets on two CoII sites (Figure 2). For comparison, the

reduction factor extracted from ⟨Lz⟩ = k × 2, gives k = 0.829,
very close to the previous estimate, which proves once again
that the configuration in Scheme 1b is a good approximation
for the ground-state term. The ground-state Kramers doublet
derived solely from this configuration is obtained perfectly axial,
i.e., having gx = gy = 0. This is evident because the two wave
functions of the ground-state Kramers doublet are |Sz = −3/2, Lz
= 2⟩ and |Sz = −3/2, Lz = −2⟩, for which the matrix elements of
transversal magnetic moments (μ̂x and μ̂y) are zero. In the real
cobalt(II) fragment, because of a small departure from C3
symmetry (which causes the splitting of the 4E term; Table 1)
and a weak admixture of other electronic configurations (via
interelectronic interaction within the 3d7 shell of CoII), there
appear small transversal components of the g tensor on CoII

(Tables 3 and S2, S4, and S6 in the Supporting Information).
The single determinant character of the ground-state term 4E
(Scheme 1b) is the ultimate reason why gx and gy are unusually
small, much smaller than those in most cobalt(II) complexes,44

a fact having a crucial effect on the SMM properties of 1−3, as
emphasized below. Although the magnetic anisotropy in the
ground-state Kramers doublets of the Co ions is obtained as
highly axial, gx,y/gz = 0.02−0.04, it is not sufficient to block
individual Co ions.

Blocking Barrier in Co−Gd−Co. In complex 1, the whole
anisotropy comes from Co ions,51 while the magnetic blocking
emerges as a common effect of this anisotropy and the
exchange interaction in the complex. The latter has been
treated within the Lines model,40 in which an effective isotropic
exchange Hamiltonian for S = 3/2 on cobalt and S = 7/2 on
gadolinium

̂ = ̂ · ̂ + ̂ + ̂ · ̂H J S S S J S S( )exch 1 Gd Co1 Co2 2 Co1 Co2 (1)

Figure 2. Effect of the first-order spin−orbit coupling on the ground-
state term 4E of the Co1 fragment in 1. Three sets of levels show the
results of the ligand field and ab initio calculations.
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is projected on the basis of ab initio wave functions
corresponding to the ground-state Kramers doublets on Co
sites and the ground-state S = 7/2 manifold on Gd sites.41,42

The obtained exchange states and the local excitations on the
metal sites above this exchange spectrum have been used for
the simulation of χ(T) T and M(H) of 1, from which the
exchange parameters J1 and J2 were derived (Figure 3). The

obtained close values of these parameters is not surprising
because the two Co ions are separated by a twice larger distance
than Co and Gd, while at comparable distances, the Co−Co
exchange is expected to be 1 order of magnitude larger. The
spectrum of the lowest spin−orbit exchange multiplets of the
complex, corresponding to the fitted exchange parameters, is
shown in Figure 4. It consists of 32 exchange states, grouped in

16 Kramers doublets, which appear from two Kramers doublet
components of each Co site and eight spin functions of a S =
7/2 multiplet on a Gd site (2 × 2 × 8 = 32).
To understand the structure of the obtained exchange

spectrum, one should remember that the exchange interaction
between perfectly axial magnetic ions, for which the transversal
g factors are exactly zero, is described by a (noncollinear) Ising
model for the projections of pseudospin components on the
local anisotropy axis of the metal ions (the Kramers doublets
on Co sites are described by pseudospins S ̃ = 1/2). An exchange
spectrum of this type has been recently found in Dy3
triangles.52 Similarly, the exchange interaction between a
perfectly axial Kramers doublet and an isotropic spin reduces
to a (collinear) Ising model between the projection of
pseudospin on the corresponding anisotropy axis and the
projection of the isotropic spin in the same direction. Then, if
Co ions were perfectly axial, the exchange interaction between
all three metal ions in 1 would have been of a net Ising type.
However, as the ab initio calculations have shown, the magnetic
anisotropy on the Co sites is strongly but not perfectly axial,
which means that the exchange spectrum will not be entirely of
the Ising type. Accordingly, the exchange spectrum in Figure 4
shows that only the lowest four and the highest three exchange
doublets are equidistant, as for an Ising exchange interaction.
The structure of these exchange states (right-hand side of
Figure 4) shows indeed that the ions are characterized by
definite projections of magnetic moments as for an Ising state.
A comparison of the obtained exchange energies and the
energies obtained in the case when the μx and μy components
of the magnetic moment of the ground-state Kramers doublet
on CoII ions were set to zero (to make CoII ions perfectly axial)
are given in Table S7 in the Supporting Information. Analysis
of energies in Table S7 in the Supporting Information confirms
that the departure from a pure Ising interaction in 1 is not
significant.
Thus, the two Co ions have maximal projections of magnetic

moments on their local anisotropy axes (they are almost
parallel to each other), while the Gd ion is characterized by a
definite projection of spin (and magnetic moment) in the same
direction. The ground-state exchange Kramers doublet
corresponds to a maximal projection M = 7/2 of gadolinium
spin in the direction of cobalt momenta, resulting in the
maximal magnetic moment of the complex (Figure 1). The
excited-state exchange Kramers doublets, 2−4 (Figure 4),
correspond to M = 5/2,

3/2, and 1/2, respectively, at the
unchanged directions of local magnetizations on Co sites. This
gradual decrease of M with increasing energy of the exchange
doublet resembles much the structure of the blocking barrier in
the conventional SMMs for complexes in the strong exchange
limit, like Mn12ac.

1,2 The main difference is that in the latter the
splitting of the ground-state spin manifold follows a parabolic
dependence, EM = |D|M2, while in the case of 1, it is almost
equidistant. On the other hand, the states in the middle of the
exchange spectrum (5−13 in Figure 4) are not of the pure Ising
type but are rather mixtures of them.
In order to determine the structure of the barrier of blocking

of magnetization on the basis of calculated exchange states, we
must assess the most efficient relaxation paths from a state with
maximal magnetization in the ground-state exchange doublet
(Figure 1) to the time-reversed state, with reversed magnet-
ization (Figure 5). The two basic relaxation mechanisms are
due to QTM and the spin−phonon transitions.2 The former
consists of (i) direct tunneling between the two components of

Figure 3. Magnetization (M) versus applied magnetic field (H) for 1.
Inset: variable-temperature molar magnetic susceptibility (χ) for 1.
Squares: measured data. Lines: ab initio based simulations with the
exchange parameters J1 = 0.9 cm−1, J2 = 0.5 cm−1, and zJ= −0.0005
cm−1 for two values of the intermolecular interaction parameter zJ (see
the text for details).

Figure 4. Exchange spectrum in 1. The exchange Kramers doublets
(left-hand side) and the internal magnetic structure of the
corresponding states (right-hand side).
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a given doublet and of (ii) indirect tunneling via excited-state
exchange states, induced by a Zeeman interaction with a
transverse magnetic field (externally applied or present in the
crystal).53,54 The direct QTM arises in Kramers complexes like
1 and 3 because of first-order Zeeman splitting of the doublet
states, induced by a transversal magnetic field, which is
proportional to the matrix element of the transversal magnetic
moment between the two doublet states. In non-Kramers
complexes like 2, this matrix element is exactly zero in virtue of
Griffith’s theorem,43,55 while the direct QTM is due to an
intrinsic tunneling gap (Δtun), present in such complexes
without any applied field. On the other hand, the matrix
elements of the spin−phonon coupling in axial complexes are
defined in the commonly used “rotational approximation”2 by
the matrix elements of S ̂x and S ̂y for pure spin systems53,54 and
of Jx̂ and Jŷ for Ln ions,56,57 both of which are proportional to
the matrix elements of transversal components of the magnetic
moment. Thus, the matrix elements of transversal magnetic
moments and the intrinsic tunneling gaps define the basic
relaxation mechanisms in our complexes. Then the blocking
barrier can be defined by the shortest paths, where these
quantities are the largest.
Figure 5 shows the exchange states of 1 (Figure 4) arranged

according to the values of their magnetic moments, which is
maximal in the direction close to the trigonal axis of the
complex, for each exchange doublet. The number at each arrow
connecting two states is the root-mean-square value of matrix
elements of magnetic moments (in μB) between the
corresponding states, calculated on the ab initio wave functions
of the complex. We can see that the magnetic moment matrix
element for the ground-state exchange doublet is extremely
small, so that no direct QTM can be expected. The largest
matrix elements are obtained for the lowest states 1−4,
corresponding to the gradual reversal of the Gd spin (Figure 4),
and also between ±4 and ±5 and between +5 and −5, as

indicated by red arrows in Figure 5. These arrows, connecting
the nearest-neighbor states, delineate a barrier of reversal of
magnetization, which resembles the one observed in SMMs
characterized by pure spin, like Mn12ac.

2 As an additional
confirmation for this analogy, all other matrix elements
involving these states are several orders of magnitude smaller.
One can say, therefore, that this barrier is of a “pure-spin” type.
There is also a second barrier in 1, corresponding to the spin−
phonon transition from the ground-state component −1 to the
excited state −6, then the transition from −6 to −7, −8, and
−10, and then to the time-reversed states in the opposite order.
The corresponding barrier is delineated in Figure 5 by curved
red arrows. At variance with the “pure-spin” barrier, it involves
only mixed excited states (Figure 4). On the other hand, the
magnetic moment matrix element connecting −6 and −7 with
+6 and +7 directly is on the order of 10−3 μB, so that the
corresponding tunneling transition between these states is less
efficient. Note that there are no other appreciable magnetic
moment matrix elements connecting the ground state −1 with
other excited states besides those shown in Figure 5. Also there
is no appreciable connection between the states forming the
“pure-spin” barrier, notably −5 and +5, with the states of the
“mixed” barrier. We note that the top of the latter, 12.6 cm−1,
compares well with Ueff = 21.3 K = 14.6 cm−1 extracted from
the ac measurements.27 The QTM in 1 is only of the indirect
type, i.e., due to the Zeeman interaction with a transverse
magnetic field.

Blocking Barrier in Co−Tb−Co. The exchange spectrum
in 2 was calculated within the same Lines model, eq 1, where
S ̂Gd was replaced by ŜTb = 3, projected on the basis of the ab
initio states corresponding to the ground-state Kramers
doublets on Co sites and the two lowest states on Tb. The
latter form a doublet split by ca. 0.02 cm−1 (Table S3 in the
Supporting Information). The obtained exchange states and the
local excitations on the metal sites above this exchange

Figure 5.Magnetization blocking barrier in 1. The exchange states are arranged according to the values of their magnetic moments. The arrows show
the connected exchange states, and the numbers at each of them stand for the corresponding matrix element of the transversal magnetic moment
(see the text for details).
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spectrum have been used for the simulation of χ(T) T and
M(H) of 2; parameters J1 and J2 were derived (Figure S3 in the
Supporting Information). The spectrum of the lowest spin−
orbit exchange multiplets of the complex, corresponding to the
fitted exchange parameters, is shown in Figure 6a. It consists of

eight exchange states that are all nondegenerate but can still be
grouped into four Ising-like doublets, which derive from two
Kramers doublet components of each Co site and two lowest
states on a Tb site (2 × 2 × 2 = 8). The obtained exchange
spectrum is almost of the Ising type, with the main deviation
being the small energy separation between the doublets 2 and 3
in Figure 6a, which comes from the mixing of two Ising
components corresponding to opposite directions of magnet-
izations on the Co sites (right-hand side of Figure 6a). At the
same time, the ground-state doublet contains two Ising-like
states with maximal possible magnetization (Figure S1 in the
Supporting Information).

Figure 6b shows the exchange states of 2 arranged according
to the value of the maximal magnetic moment arising in each of
the four doublets. Again, as in 1, the direction of this magnetic
moment is close to the trigonal axis of the complex. The spin−
phonon relaxation path connecting −1 and −2 can either go via
one single state, −2 or −3 (Orbach or Raman processes45) or
involve an additional step of resonance tunneling between −2,
+2 and −3, +3 (thermally activated tunneling mechanism53).
The activation barrier extracted from ac measurements, Ueff =
14.5 K = 9.9 cm−1, compares well with energies of the excited
exchange states 2 and 3 (11.2 cm−1 in Table S8 in the
Supporting Information). We should note that, according to
the data in Figure 6b, the relaxation path between −2, −3 and
+2, +3 should be efficient because, besides the intrinsic
tunneling gaps in each of the doublets 2 and 3, there is a very
large magnetic moment matrix element of ca 3 μB between the
states −3, +2 and +3, −2, separated by only 0.03 cm−1 (Table
S8 in the Supporting Information), which is expected to induce
relatively large Zeeman splitting in the presence of a transverse
magnetic field. This probably explains why the relaxation of
magnetization in 2 does not change after application of a
longitudinal dc field of 1000 Oe;27 it is simply not sufficient to
suppress the tunneling in the excited doublets 2 and 3.
However, a dc field of 3000 Oe increases the activation barrier
to Ueff = 20.9 K,27 which can be explained as a result of
suppression of tunneling dynamics within the doublets 2 and 3.
Indeed, after this suppression, the path involving the next
excited state 4 becomes operative because it is characterized by
comparable magnetic moment matrix elements as the lowest
path (Figure 6b). The two relaxation processes will take place
concomitantly, while the value of the activation barrier
extracted from ac measurements (20.9 K) falls between the
excitation energies to the states 2, 3 and the state 4. The
intrinsic tunneling gap for the lowest exchange doublet in 2 is
on the order 10−7 cm−1 (Figure 6b).

Blocking Barrier in Co−Dy−Co. A similar treatment of
the exchange interaction for complex 3 (with SĜd in eq 1
replaced by SD̂y =

5/2 including the projection on the lowest
Kramers doublets of the Co1, Dy, and Co2 sites (Table S6 in
the Supporting Information), after the fitting of χ(T) T and
M(H) (Figure S4 in the Supporting Information) and
extraction of J1 and J2 yield the spectrum of lowest exchange
levels shown in Figure 7a. The four exchange Kramers doublets
arise from the two components of the lowest Kramers doublets
on the Co1, Co2, and Dy sites (2 × 2 × 2 = 8). The scheme of
exchange states arranged according to the values of their
magnetic moments (again, almost parallel to the common axis
of the complex) gives a scheme in Figure 7b that is similar to
the scheme in Figure 6b for 2. Also, the values of the magnetic
moment matrix elements are comparable in both schemes, thus
implying common relaxation mechanisms in both complexes
(the only difference is the relaxation within the doublets 2 and
3, which is driven by intrinsic tunneling gaps in 2 and is of
Zeeman origin in 3).
Finally, the above calculations explain why QTM is fast in 3,

relatively slow in 2, and the slowest for 1. Indeed, the jump of
magnetization at H = 0 is large for dysprosium, small for
terbium, and almost absent for gadolinium (parts c, b, and a,
respectively, in Figure S6 in the Supporting Information). The
height of these magnetization steps are proportional to the
probability of transition between the two Zeeman components
of the ground-state exchange doublet when the field is swept
through the H = 0 point. According to Landau−Zener−

Figure 6. Exchange spectrum and magnetization blocking barrier in 2:
(a) exchange doublets (left-hand side) and the internal magnetic
structure of the corresponding states (right-hand side); (b) exchange
states arranged according to the values of their magnetic moments.
The arrows show the connected exchange states, and the numbers at
each of them stand for the corresponding matrix element of the
transversal magnetic moment. The horizontal black arrows connect
states split by an intrinsic tunneling gap (see the text for details).
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Stückelberg theory,2 this probability depends on the tunneling
splitting Δt, when it is relatively small, approximately as ∼Δt

2.
Figure 8 shows the calculated Δt for the ground-state

exchange doublet of the three complexes as a function of the
transversal field. The intrinsic tunneling gap in 2 remains
practically unchanged, which is a consequence of the absence of
the linear Zeeman effect for transverse fields. By contrast, the

latter is mainly responsible for the opening of the gap in 3,
which is the result of a nonnegligible transversal magnetic
moment matrix element for the ground-state doublet (Figure
7b). On the other hand, this matrix element is negligible in 1,
where Δt is very small at moderate transverse fields and due to
many intermediate states involved in both barriers (Figure 5).
Figure 8 shows that, for typical values of internal fields (30−40
mT), Δt is smallest for 1 and largest for 3, in agreement with
what we infer from Figure S6 in the Supporting Information.
We should note that QTM is further enhanced in 2 and 3 via
hyperfine coupling on Tb and Dy ions, respectively,58 while this
effect is absent for Gd.

■ CONCLUSIONS
The fragment ab initio calculations showed that the CoII sites in
complexes 1−3 preserve large unquenched orbital momentum
in the ground state (ca. 1.7 μB), leading through the first-order
spin−orbit coupling, to unexpectedly strong uniaxial magnetic
anisotropy, comparable to Ln ions (e.g., Dy3+). Furthermore, it
turns out that it is this anisotropy that makes all three
compound SMMs.
Applying an originally developed ab initio based analysis of

the magnetization blocking barriers in complexes 1−3, we
found qualitative differences between them, which explain the
experimental findings. Namely, the much stronger suppression
of QTM in 1 compared to 2 and 3 is due to qualitative
differences in the structure of blocking barriers. The latter
consists of several excited states in 1, while it involves only one
excited state in 2 and 3. The reason for this is the higher (8-
fold) degeneracy of the ground-state multiplet on the Gd site in
1 compared to the ground-state manifolds on the Ln sites in 2
and 3, which are only 2-fold degenerate. This leads to a denser
exchange spectrum in the former compound and, as a result, to
multilevel blocking barriers. This conclusion seems to be
general for other polynuclear complexes involving strongly
anisotropic metal sites. It could well be that the right strategy
for the design of efficient SMMs is to combine in one
compound strongly anisotropic and completely isotropic metal
ions with large angular momentum. Besides suppression of
QTM, an efficient SMM should also possess a high barrier of
reversal of magnetization, which at its turn is determined by the
strength of exchange interactions between the ions. Both of
these requirements are probably best met in mixed 4,5f−4,5d
complexes.
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(57) Luis, F.; Martínez-Peŕez, M. J.; Montero, O.; Coronado, E.;
Cardona-Serra, S.; Martí-Gastaldo, C.; Clemente-Juan, J. M.; Sese,́ J.;
Drung, D.; Schurig, T. Phys. Rev. B 2010, 82, 060403(R).
(58) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Angew. Chem., Int. Ed.
2005, 44, 2931.
(59) We are grateful to the reviewers for pointing this out.

Inorganic Chemistry Article

dx.doi.org/10.1021/ic302568x | Inorg. Chem. 2013, 52, 6328−63376337


